Non-linear maps on self-adjoint operators preserving numerical radius and numerical range of Lie product
نویسندگان
چکیده
منابع مشابه
Linear Operators Preserving the Numerical Range ( Radius ) on Triangular
We characterize those linear operators on triangular or diagonal matrices preserving the numerical range or radius.
متن کاملLinear Operators Preserving the Numerical Range (Radius) on Triangular Matrices
We characterize those linear operators on triangular or diagonal matrices preserving the numerical range or radius.
متن کاملSchur product of matrices and numerical radius (range) preserving maps
Let F (A) be the numerical range or the numerical radius of a square matrix A. Denote by A◦B the Schur product of two matrices A and B. Characterizations are given for mappings on square matrices satisfying F (A ◦ B) = F (φ(A) ◦ φ(B)) for all matrices A and B. Analogous results are obtained for mappings on Hermitian matrices. 2000 Mathematics Subject Classification. 15A04, 15A18, 15A60
متن کاملProduct of Operators and Numerical Range Preserving Maps
Let V be the C∗-algebra B(H) of bounded linear operators acting on the Hilbert space H, or the Jordan algebra S(H) of self-adjoint operators in B(H). For a fixed sequence (i1, . . . , im) with i1, . . . , im ∈ {1, . . . , k}, define a product of A1, . . . , Ak ∈ V by A1 ∗ · · · ∗ Ak = Ai1 . . . Aim . This includes the usual product A1 ∗ · · · ∗ Ak = A1 · · ·Ak and the Jordan triple product A ∗ ...
متن کاملNumerical Range of Lie Product of Operators
Denote by W (A) the numerical range of a bounded linear operator A, and [A, B] = AB −BA the Lie product of two operators A and B. Let H, K be complex Hilbert spaces of dimension ≥ 2 and Φ : B(H) → B(K) be a map whose range contains all operators of rank ≤ 1. It is shown that Φ satisfies that W ([Φ(A), Φ(B)]) = W ([A, B]) for any A, B ∈ B(H) if and only if dim H = dim K, there exist ε ∈ {1,−1}, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear and Multilinear Algebra
سال: 2015
ISSN: 0308-1087,1563-5139
DOI: 10.1080/03081087.2015.1007912